Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Mater ; 36(1): e2307617, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37770031

RESUMO

Layered oxides represent a prominent class of cathodes employed in lithium-ion batteries. The structural degradation of layered cathodes causes capacity decay during cycling, which is generally induced by anisotropic lattice strain in the bulk of cathode particle and oxygen release at the surface. However, particularly in lithium-rich layered oxides (LLOs) that undergo intense oxygen redox reactions, the challenge of simultaneously addressing bulk and surface issues through a singular modification technique remains arduous. Here a thin (1-nm) and coherent spinel-like phase is constructed on the surface of LLOs particle to suppress bulk strain and surface O2 release by just adjusting the amount of lithium source during synthesis. The spinel-like phase hinders the surface O2 release by accommodating O2 inside the surface layer, while the trapped O2 in the bulk impedes strain evolution by ≈70% at high voltages compared with unmodified LLOs. Consequently, the enhanced structural stability leads to an improved capacity retention of 97.6% and a high Coulombic efficiency of ≈99.5% after 100 cycles at 0.1°C. These findings provide profound mechanistic insights into the functioning of surface structure and offer guidance for synthesizing high-capacity cathodes with superior cyclability.

2.
Angew Chem Int Ed Engl ; 63(7): e202315608, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38083796

RESUMO

The development of high-energy-density Li||LiCoO2 batteries is severely limited by the instability of cathode electrolyte interphase (CEI) at high voltage and high temperature. Here we propose a mechanically and thermally stable CEI by electrolyte designing for achieving the exceptional performance of Li||LiCoO2 batteries at 4.6 V and 70 °C. 2,4,6-tris(3,4,5-trifluorophenyl)boroxin (TTFPB) as the additive could preferentially enter into the first shell structure of PF6 - solvation and be decomposed on LiCoO2 surface at low oxidation potential to generate a LiBx Oy -rich/LiF-rich CEI. The LiBx Oy surface layer effectively maintained the integrity of CEI and provided excellent mechanical and thermal stability while abundant LiF in CEI further improved the thermal stability and homogeneity of CEI. Such CEI drastically alleviated the crack and regeneration of CEI and irreversible phase transformation of the cathode. As expected, the Li||LiCoO2 batteries with the tailored CEI achieved 91.9 % and 74.0 % capacity retention after 200 and 150 cycles at 4.6 and 4.7 V, respectively. Moreover, such batteries also delivered an unprecedented high-temperature performance with 73.6 % capacity retention after 100 cycles at 70 °C and 4.6 V.

4.
Nanomicro Lett ; 15(1): 215, 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37737445

RESUMO

Fast-charging lithium-ion batteries are highly required, especially in reducing the mileage anxiety of the widespread electric vehicles. One of the biggest bottlenecks lies in the sluggish kinetics of the Li+ intercalation into the graphite anode; slow intercalation will lead to lithium metal plating, severe side reactions, and safety concerns. The premise to solve these problems is to fully understand the reaction pathways and rate-determining steps of graphite during fast Li+ intercalation. Herein, we compare the Li+ diffusion through the graphite particle, interface, and electrode, uncover the structure of the lithiated graphite at high current densities, and correlate them with the reaction kinetics and electrochemical performances. It is found that the rate-determining steps are highly dependent on the particle size, interphase property, and electrode configuration. Insufficient Li+ diffusion leads to high polarization, incomplete intercalation, and the coexistence of several staging structures. Interfacial Li+ diffusion and electrode transportation are the main rate-determining steps if the particle size is less than 10 µm. The former is highly dependent on the electrolyte chemistry and can be enhanced by constructing a fluorinated interphase. Our findings enrich the understanding of the graphite structural evolution during rapid Li+ intercalation, decipher the bottleneck for the sluggish reaction kinetics, and provide strategic guidelines to boost the fast-charging performance of graphite anode.

5.
Nat Commun ; 14(1): 4474, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37491340

RESUMO

High-performance Li-ion/metal batteries working at a low temperature (i.e., <-20 °C) are desired but hindered by the sluggish kinetics associated with Li+ transport and charge transfer. Herein, the temperature-dependent Li+ behavior during Li plating is profiled by various characterization techniques, suggesting that Li+ diffusion through the solid electrolyte interface (SEI) layer is the key rate-determining step. Lowering the temperature not only slows down Li+ transport, but also alters the thermodynamic reaction of electrolyte decomposition, resulting in different reaction pathways and forming an SEI layer consisting of intermediate products rich in organic species. Such an SEI layer is metastable and unsuitable for efficient Li+ transport. By tuning the solvation structure of the electrolyte with a lower lowest unoccupied molecular orbital (LUMO) energy level and polar groups, such as fluorinated electrolytes like 1 mol L-1 lithium bis(fluorosulfonyl)imide (LiFSI) in methyl trifluoroacetate (MTFA): fluoroethylene carbonate (FEC) (8:2, weight ratio), an inorganic-rich SEI layer more readily forms, which exhibits enhanced tolerance to a change of working temperature (thermodynamics) and improved Li+ transport (kinetics). Our findings uncover the kinetic bottleneck for Li+ transport at low temperature and provide directions to enhance the reaction kinetics/thermodynamics and low-temperature performance by constructing inorganic-rich interphases.

6.
Adv Mater ; 35(33): e2301898, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37158492

RESUMO

Organic electroactive materials take advantage of potentially sustainable production and structural tunability compared to present commercial inorganic materials. Unfortunately, traditional redox flow batteries based on toxic redox-active metal ions have certain deficiencies in resource utilization and environmental protection. In comparison, organic electroactive materials in aqueous redox flow batteries (ARFBs) have received extensive attention in recent years for low-cost and sustainable energy storage systems due to their inherent safety. This review aims to provide the recent progress in organic electroactive materials for ARFBs. The main reaction types of organic electroactive materials are classified in ARFBs to provide an overview of how to regulate their solubility, potential, stability, and viscosity. Then, the organic anolyte and catholyte in ARFBs are summarized according to the types of quinones, viologens, nitroxide radicals, hydroquinones, etc, and how to increase the solubility by designing various functional groups is emphasized. The research advances are presented next in the characterization of organic electroactive materials for ARFBs. Future efforts are finally suggested to focus on building neutral ARFBs, designing advanced electroactive materials through molecular engineering, and resolving problems of commercial applications.

7.
Adv Mater ; 35(9): e2209985, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36534438

RESUMO

The ever-growing annual electricity generated from sustainable and intermittent energy such as wind and solar power requires cost effective and reliable electrochemical energy storage. Rechargeable batteries based on multivalent metal anodes such as Zn, Al, and Fe, taking advantage of large-scale production and affordable cost, have emerged as promising candidates. However, the uncontrollable dendrite-like metal deposition on regular substrate caused by disordered metal crystallization usually leads to premature failure of batteries and even safety concerns when the dendrite bridges the electrodes. Here it is reported that a series of metal anodes (Zn, Co, Al, Ni, and Fe) with multiple crystal structures (hexagonal close-packed, face-centered cubic, and body-centered cubic) can achieve dendrite-free and epitaxial deposition on single-crystal Cu(111) substrates enabled by the closest packing crystallography. Moreover, the closest packed facets are aligned horizontally with the substrates, resulting in compact planar construction and excellent chemical stability even at an unprecedented current density of 1 A cm-2 . The full cells under a practical anode-to-cathode capacity ratio of 2.3 show a cycling life span of over 800 cycles with Coulombic efficiency of > 99.9%. The universal approach of regulating metal electrodeposition in this work is expected to boost the development of emerging sustainable energy storage/conversion devices.

8.
Angew Chem Int Ed Engl ; 61(39): e202209642, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-35909226

RESUMO

Quinone compounds, which are capable of accommodating proton (H+ ), are emerging electrodes in aqueous batteries. However, the storage mechanism of proton in quinone compounds is less known and the energy/power density of quinone-based proton battery is still limited. Here we design a series of quinone anodes and study their electrochemical properties in acidic electrolyte, in which tetramethylquinone (TMBQ) delivers a high capacity of 300 mAh g-1 with an extremely low polarization of 20 mV at 1 C, and maintains over 50 % theoretical capacity in less than 16 seconds. The fast kinetics of TMBQ is attributed to the continuous H+ migration channel, high H+ diffusion coefficient (10-6  cm2 s-1 ), and low H+ migration energy barrier (0.26 eV). When coupling with MnO2 cathode, the battery shows a long lifespan of 4000 cycles with a capacity retention of 77 % at 5 C. This study reveals the proton transport in quinone-electrodes and offers new insights to design advanced aqueous batteries.

9.
Sci Adv ; 7(35)2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34433562

RESUMO

The strong electrostatic interaction between Al3+ and close-packed crystalline structures, and the single-electron transfer ability of traditional cationic redox cathodes, pose challenged for the development of high-performance rechargeable aluminum batteries. Here, to break the confinement of fixed lattice spacing on the diffusion and storage of Al-ion, we developed a previously unexplored family of amorphous anion-rich titanium polysulfides (a-TiS x , x = 2, 3, and 4) (AATPs) with a high concentration of defects and a large number of anionic redox centers. The AATP cathodes, especially a-TiS4, achieved a high reversible capacity of 206 mAh/g with a long duration of 1000 cycles. Further, the spectroscopy and molecular dynamics simulations revealed that sulfur anions in the AATP cathodes act as the main redox centers to reach local electroneutrality. Simultaneously, titanium cations serve as the supporting frameworks, undergoing the evolution of coordination numbers in the local structure.

10.
Nano Lett ; 21(12): 5316-5323, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34080870

RESUMO

Graphitic carbons and their lithium composites have been utilized as lithium deposition substrates to address issues such as the huge volume variation and dendritic growth of lithium. However, new problems have appeared, including the severe exfoliation of the graphite particles and the instability of the solid electrolyte interphase (SEI) film when metallic lithium is plated on the graphite. Herein, we enhance the stability of the SEI film on the graphite substrate for lithium deposition in an electrolyte of lithium bis(fluorosulfonyl)imide (LiFSI) dissolved in the carbonate solvent, thereby improving the lithium plating/stripping cycle on it. The FSI- anion was found to be responsible for the formation of a compact SEI film under the lithium plating potential and could protect the graphite substrate. These findings refresh the understanding of the SEI stability and provide a suggestion on the design and development of electrolytes for the lithium batteries.

11.
Nano Lett ; 21(7): 3310-3317, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33797262

RESUMO

The development of lithium metal batteries is hindered by the low Coulombic efficiency and poor cycling stability of the metallic lithium. The introduction of consumptive LiNO3 as an additive can improve the cycling stability, but its low solubility in the carbonate electrolytes makes this strategy impractical for long-term cycling. Herein we propose LiNO3 as a cosalt in the LiPF6-LiNO3 dual-salt electrolyte to enhance the cycling stability of lithium plating/stripping. Competitions among the components and the resultant substitution of NO3- for PF6- in the solvation shell facilitate the formation of a Li3N-rich solid electrolyte interphase (SEI) film and suppress the LiPF6 decomposition. The highly Li+ conductive and stable SEI film effectively tailors the lithium nucleation, suppresses the formation of lithium dendrites, and improves the cycling performance. The competitive solvation has profound importance for the design of a complex electrolyte to meet the multiple requirements of secondary lithium batteries.

12.
ACS Appl Mater Interfaces ; 13(18): 21459-21466, 2021 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-33905650

RESUMO

The lack of electrolyte that is stable under high potentials hinders the application of high-voltage cathode materials for lithium batteries; the introduction of electrolyte additives is clearly the most effective solution to address this issue. Herein, we investigated the synergistic effects of trimethyl borate (TMB) in two dual-additive electrolytes on protecting the LiNi0.8Co0.1Mn0.1O2 and LiCoO2 cathode materials under high potentials. The interactions of TMB with fluoroethylene carbonate and the catalysis of the decomposition product of TMB to tetramethylene sulfone lower the onset oxidation potential of these additives and are beneficial in forming a stable cathode electrolyte interphase film on the cathode materials. This work sheds light on another way of electrolyte designing for high-voltage cathode materials.

13.
Nano Lett ; 20(5): 3836-3843, 2020 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-32286074

RESUMO

The lithium and sodium storage behavior of porous carbon remains controversial, though it shows excellent cycling stability and rate performances. This Letter discloses the insertion, adsorption, and filling properties of porous carbon. 7Li nuclear magnetic resonance (NMR) spectroscopy recognized inserted and adsorbed lithium in this porous carbon but did not observe any other forms of lithium above 0.0 V vs. Li+/Li. In addition, although lithium insertion mainly takes place at low potentials, adsorption was found to be the main form of lithium storage throughout the investigated potential range. Such a storage feature is responsible for the excellent rate performance and high specific capacity of porous carbon. Raman spectroscopy further demonstrated the structural reversibility of the carbon in different potential ranges, verifying the necessity to optimize the potential range for a better cycling performance. These findings provide insights for the design and application of porous carbon.

14.
Angew Chem Int Ed Engl ; 58(49): 17820-17826, 2019 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-31571354

RESUMO

The lack of high-power and stable cathodes prohibits the development of rechargeable metal (Na, Mg, Al) batteries. Herein, poly(hexaazatrinaphthalene) (PHATN), an environmentally benign, abundant and sustainable polymer, is employed as a universal cathode material for these batteries. In Na-ion batteries (NIBs), PHATN delivers a reversible capacity of 220 mAh g-1 at 50 mA g-1 , corresponding to the energy density of 440 Wh kg-1 , and still retains 100 mAh g-1 at 10 Ag-1 after 50 000 cycles, which is among the best performances in NIBs. Such an exceptional performance is also observed in more challenging Mg and Al batteries. PHATN retains reversible capacities of 110 mAh g-1 after 200 cycles in Mg batteries and 92 mAh g-1 after 100 cycles in Al batteries. DFT calculations, X-ray photoelectron spectroscopy, Raman, and FTIR show that the electron-deficient pyrazine sites in PHATN are the redox centers to reversibly react with metal ions.

15.
ACS Appl Mater Interfaces ; 11(19): 17435-17443, 2019 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-31021075

RESUMO

Enhancing the stability of the interface between the electrode and electrolyte at high voltages is crucial concerning the development of Li-ion batteries with high energy densities. Application of some additives in the electrolyte is not only the simplest but also the most effective way to form a protection layer against the electrolyte decomposition and the electrolyte corrosion to the electrode. Herein, we introduce trimethyl borate (TMB) as an additive of the commercial electrolyte to ameliorate the performance of a LiCoO2 cell charged to 4.5 V because its addition lowers the oxidation potential of the baseline electrolyte (3.75 V vs 4.25 V). By being oxidized preferentially and thus forming a compact protection layer of about 25 nm thick on the cathode surface, the additive suppresses the electrolyte decomposition and protects the LiCoO2 cathode against the structural degradation. The capacity retention of the cell after 100 cycles between 2.5 and 4.5 V at 0.1 C increases from 64 to 81% when 2.0 wt % TMB is added into the baseline electrolyte. The X-ray photoelectron spectroscopic results demonstrate the oxidation of TMB on the cathode and therefore the suppressed decomposition of the electrolyte. The results of the X-ray diffraction and Raman spectroscopy show the better structural maintenance of the LiCoO2 material in the TMB-containing electrolyte. The protection mechanism of the TMB additive was comprehensively studied.

16.
Nano Lett ; 19(1): 494-499, 2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-30517787

RESUMO

Lithium metal is an ideal anode material due to its high specific capacity and low redox potential. However, issues such as dendritic growth and low Coulombic efficiency prevent its application in secondary lithium batteries. The use of three-dimensional (3D) porous current collector is an effective strategy to solve these problems. Herein, commercial carbon nanotube (CNT) sponge is used as a 3D current collector for dendrite-free lithium metal deposition to improve the Coulombic efficiency and the cycle stability of the lithium metal batteries. The high specific surface area of the CNT increases the density of the lithium nucleation sites and ensures the uniform lithium deposition while the "pre-lithiation" behavior of the porous CNT enhances its affinity with the deposited lithium. Meanwhile, the lithium plating/stripping on the sponge maintains high Coulombic efficiency and high cycling stability due to the robust structure of graphitic-amorphous carbon composite in the ether-based electrolyte. Our findings exhibit the feasibility of using CNT sponge as a 3D porous current collector for lithium deposition. They shed light on designing and developing advanced current collectors for the lithium metal electrode and will promote the commercialization of the secondary lithium batteries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...